Northwestern 3D Printing & Rapid Prototyping Lab

Additive Manufacturing Capabilities:

$Northwestern \, \big| \, \texttt{ENGINEERING} \\ \, \textit{Mechanical Engineering} \\$

Process	Machine	Product Example	Description	Material	Layer Thickness	Min feature size	Max build area	Support Type	Speed	Cost of material	Cost of support	General use/notes:
Fused Deposition Modeling (FDM)	Stratasys Fortus 250mc Stratasys Fortus 380mc Prusa Mk3S+		FDM (a.k.a FFF) extrudes a filament through a heated nozzle, depositing the material on a surface/part where it cools and bonds into a solid part. Parts modeled as solid may be printed with partial infill, from roughly 10% - 100% full solid. (Full solid only available on Stratasys machines)	Stratasys: White or colored ABS Prusa: PLA (multiple colors), Polycarbonate Blend, TPU. Other	0.25, 0.33 mm Prusa:	0.5mm	Fortus 250: 254 mm x 254 mm x 305 mm Fortus 380: 356 x 305 x 305 mm	Stratasys: Secondary material, dissolved in cleaning tank. Prusa: Primary material, must be manually removed.	Slow	Stratasys: \$4.75 - \$5.25/cubic inch Prusa: \$0.12 - \$0.17 /gram	\$7.50 - \$8.35/cubic inch Prusa: n/a (same as material)	Best used for large, functional components. Can print in only one color. Direction of build influences strength of part.
Fused Deposition Modeling (FDM) + Continuous Fiber Reinforcement	Markforged Mark2		Process is identical to FDM (FFF). Markforged utilized a specialized secondary nozzle to include continuous fiber into the component, allowing for tensile strength to match or exceed Aluminum.	Fiber Reinforcement: Fiberglass, Kevlar, Carbon Fiber	0.1, 0.125mm	0.5mm	320 x 132 x 154 mm	Primary material, must be manually removed.	Very Slow	Base Material: \$0.45/cc Fiber Reinforcement: \$2.00 -\$3.75 / cc	n/a - same as base material	• Fiber reinforcement adds significant cost to parts • Fiber reinforcement can not be added to features below 3.6mm wide • Fiber reinforcement fill percentage may range from 5% - 100%
Stereolithography (SLA)	FormLabs Form 2 Formlabs Form 3B+	II II	Stereolithography (SLA) functions by curing a photosensitive resin via a laser. Layers are generally finer than FDM printers, resulting in a smoother part appearance	, , ,	0.025 (some resins), 0.05, 0.1mm	0.2mm	145 × 145 × 175 mm	Primary material, must be manually removed.	Medium	\$0.39 - \$0.50/mL	\$.39 - \$0.50/mL (same as base material)	High resolution features Small feature material properties & strength equal to bulk part. Internal geometry and channels possible - Liquid resin must be able to be flushed out.
Polyjet - Droplet Deposition Stereolithography (SLA)	Stratasys Connex 350		DDS uses uses 8 print heads to exponge a photocurable resin and support, onto a build plate. These materials are then cured via a UV light to solidify the part. 2 Core material types can be combined during a single print, allowing up to 14 different digital materials to be included in a single part.	Standard Rigid Opaque (Acrylic like) - Clear, White, Gray, Black Polypropylene-Like (Rigid & Flexible Blend) Flexible rubber-like - ShoreA 27 - 95 Two-part resin - High Strength ABS		.050mm	340 x 340 x 200 mm	Secondary material. Gel- like, removed via high pressure waterjet. Must be accessable by line-of- sight	Fast	\$0.35-0.40/gram	\$.28/gram	Can print multiple materials in the same print. Highest resolution features only available without support material Highest resolution layers, resulting in best-finish and appearance.
Selective Laser Sintering (SLS)	Formlabs Fuse 1+ 30W		Selective laser sintering uses a high powered laser to fuse fine powder into a solid layer & part. This process is able to produce parts with minimal anisotropy, and is well suited to multiple quantitites of similar parts. No support material is required for printing part overhangs	• Nylon 11	0.11mm	.25mm	165 x 165 x 300	No support required - complementary unsintered powder support	Medium	\$0.26/gram	n/a - no support used	Surface finish is rougher compared to other printing methods An additional ~1.5x print time is required for part cooling following printing
Direct Metal Laser Sintering (DMLS)	3D Systems Phenix PXS	N. S.	DMLS uses a focused laser beam to cure metal powder to a solid part through a melting process. Successive metal powder layers are then deposited on top of a solidified layer, allowing the laser to bond material to previously formed layers of metal.	Stainless Steel 17-4 PH 94 - 98% dense	0.001"	0.004"	3.9" x 3.9" x 3.1"	Yes. Support structure is metal - removal is done manually by requesting party.	Slow	\$.5060/ gram + \$50 setup fee	\$.5060/gram	Highest strength parts - truly usable in high load and real-world applications. Support structure is firmly attached, and requires manual finishing.

Rapid Prototyping Part Request Process:

- 1. Generate ".STL" files of each individual part to be prototyped.
- 2. Contact the Lab Email Address: rp.lab@northwestern.edu. Initial request email should include the following:
- STL File of each individual part to be printed
- Quantity of each part file to be printed
- Machine & Material choice for each part file to be printed
- Chartstring account number to charge build costs
- 3. Meet with RP lab staff during office hours to review machine and material options, and finalize remaining details.
- A meeting is only required for first-time requests of each part. Iterations & revisions may be requested without requiring a meeting.
- Precise quotes can be provided at this meeting
- Significant part changes or new part requests require a new meeting.
- 4. Your part will be added to the build queue, and printed once the selected machine is available.
- 5. The lab will notify the requestor via email when the part is ready for pickup.